Induction of platelet formation from megakaryocytoid cells by nitric oxide.

نویسندگان

  • E Battinelli
  • S R Willoughby
  • T Foxall
  • C R Valeri
  • J Loscalzo
چکیده

Although the growth factors that regulate megakaryocytopoiesis are well known, the molecular determinants of platelet formation from mature megakaryocytes remain poorly understood. Morphological changes in megakaryocytes associated with platelet formation and removal of senescent megakaryocytes are suggestive of an apoptotic process. Previously, we have established that nitric oxide (NO) can induce apoptosis in megakaryocytoid cell lines. To determine whether there is an association between NO-induced apoptosis and platelet production, we exposed Meg-01 cells to S-nitrosoglutathione (GSNO) with or without thrombopoeitin (TPO) pretreatment and used flow cytometry and electron microscopy to assess platelet-sized particle formation. Meg-01 cells treated with TPO alone produced few platelet-sized particles (<3% of total counts), whereas treatment with GSNO alone produced a significant percentage of platelet-sized particles (22 +/- 4% of total counts); when combined with TPO pretreatment, however, GSNO led to a marked increase in platelet-sized particle production (48 +/- 3% of total counts). Electron microscopy confirmed that Meg-01 cells treated with TPO and GSNO yielded platelet-sized particles with morphological features specific for platelet forms. The platelet-sized particle population appears to be functional, because addition of calcium, fibrinogen, and thrombin receptor-activating peptide led to aggregation. These results demonstrate that NO facilitates platelet production, thereby establishing the essential role of NO in megakaryocyte development and thrombopoiesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EXPRESSION OF INDUCIBLE NITRIC OXIDE SYNTHASE GENE (iNOS) STIMULATED BY HYDROGEN PEROXIDE IN HUMAN ENDOTHELIAL CELLS

Inducible nitric oxide synthase (iNOS) gene expresses a calcium calmudolin-independent enzyme which can catalyse NO production from L-arginine. The induction of iNOS activity has been demonstrated in a wide variety of cell types under stimulation with cytokines and lipopoly saccharide (LPS). Previous studies indicated that all nitric oxide synthases (NOS) activated in human umbilical vein endot...

متن کامل

Nitric Oxide Production and Apoptosis Induction in T Cells through Stimulation of Mesenchymal Stem Cells with Zymosan

Background & Aims: Mesenchymal stem cells (MSCs) are non-hematopoietic multipotant cells, which multiply through attaching to culture plates. Toll-like receptors (TLRs) are inherent immune sensors and regulators of immunomodulatory activities of MSCs. The aim of this study was to investigate the effects of zymosan on stem cell polarization into anti-inflammatory phenotypes through the productio...

متن کامل

AGE proteins as a causative factor in Alzheimer's Disease

The reaction between reducing sugars and protein free amines, known as the Maillar reaction results in the formation of advanced glycation endproducts (AGEs). AGE modification changes the structure of proteins to amyloid cross-beta structure. These protein structures can activate receptors known as RAGE on glial cells (microglia and astrocytes), and induce the expression of inducible nitric oxi...

متن کامل

AGE proteins as a causative factor in Alzheimer's Disease

The reaction between reducing sugars and protein free amines, known as the Maillar reaction results in the formation of advanced glycation endproducts (AGEs). AGE modification changes the structure of proteins to amyloid cross-beta structure. These protein structures can activate receptors known as RAGE on glial cells (microglia and astrocytes), and induce the expression of inducible nitric oxi...

متن کامل

Nitric oxide induces apoptosis in megakaryocytic cell lines.

Cytokines that stimulate inducible nitric oxide (NO) synthase can suppress the growth and differentiation of normal human bone marrow cells, including megakaryocytes. Since NO promotes apoptosis in other cell systems, we chose to study the determinants of apoptosis in megakaryocytic cells. We show that both exogenous and endogenous sources of NO can induce apoptosis in megakaryocytoid cell line...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 98 25  شماره 

صفحات  -

تاریخ انتشار 2001